Singular kinetic McKean-Vlasov SDEs-久久久久国产成人精品亚洲综合_亚洲精品国产A久久久久久_精品亚洲日韩国产精品一区二区三区_AV无码久久无码_国产精品国产亚洲精品看不卡_午夜亚洲精品国产乱码久久久人妻_久久久99无码精品一区二区三区_欧美日韩精品国产精品一区二区三区高清免费

久久久久国产成人精品亚洲综合_亚洲精品国产A久久久久久_精品亚洲日韩国产精品一区二区三区_AV无码久久无码_国产精品国产亚洲精品看不卡_午夜亚洲精品国产乱码久久久人妻_久久久99无码精品一区二区三区_欧美日韩精品国产精品一区二区三区高清免费

Singular kinetic McKean-Vlasov SDEs

发布时间:2024-11-04 点击次数:

标题:Singular kinetic McKean-Vlasov SDEs

报告时间:2024年11月4日(星期一)15:30-16:30

报告地点:线上腾讯会议(会议ID:513-157-445)

主讲人:郝子墨

主办单位:数学与统计学院

报告内容简介:

In this talk, we delve into mean-field kinetic stochastic differential equations (SDEs) featuring Gaussian environment noise and singular interaction kernels driven by Brownian motion and α-stable processes. First, we develop paracontrolled calculus within the kinetic framework when the driving noise is Brownian motion. Applying this, we establish global well-posedness for nonlinear singular kinetic equations with both singular environment noise and bounded interaction kernel, contingent upon the well-definition of the products of singular terms. We obtain how such products can be defined in scenarioses where the singular term is a Gaussian random field. Second, when the driving noise takes an α-stable process, we give the well-posedness and provide quantitative estimates for the propagation of chaos related to the kinetic SDEs endowed with singular interaction kernels, such as the Coulomb potential, and devoid of environment noise (The talk is based on joint works with Jean-Francois Jabir, Stephane Menozzi, Michael R¨ockner, Xicheng Zhang, Rongchan Zhu and Xiangchan Zhu).

主讲人简介:

郝子墨于2023年博士毕业于武汉大学数学与统计学院和Bielefeld大学数学学院。现为Bielefeld大学博士后研究员。主要研究方向为奇异系数的SDE。已在 J. Math. Pures Appl., SIAM J. Math. Anal., Bernoulli等国际权威期刊发表多篇学术论文。



久久久久国产成人精品亚洲综合_亚洲精品国产A久久久久久_精品亚洲日韩国产精品一区二区三区_AV无码久久无码_国产精品国产亚洲精品看不卡_午夜亚洲精品国产乱码久久久人妻_久久久99无码精品一区二区三区_欧美日韩精品国产精品一区二区三区高清免费